Logo del repository
  1. Home
 
Opzioni

Vorticity in analogue spacetimes

Liberati, Stefano
•
Schuster, Sebastian
•
Tricella, Giovanni
•
Visser, Matt
2019
  • journal article

Periodico
PHYSICAL REVIEW D
Abstract
Analogue spacetimes can be used to probe and study physically interesting spacetime geometries by constructing, either theoretically or experimentally, some notion of an effective Lorentzian metric [geff(g,V,Ξ)]ab. These effective metrics generically depend on some physical background metric gab, often flat Minkowski space ηab, some "medium" with 4-velocity Va, and possibly some additional background fields and parameters Ξ. (These might include signal propagation speeds and the like.) Analogue spacetimes based on electromagnetic media date back to Gordon's work in the 1920s, analogue spacetimes based on acoustics in fluids date back to Unruh's work in the 1980s, and BEC-based analogue spacetimes date back to various authors in the 1990s. The analogue spacetimes based on acoustic propagation in bulk fluids have perhaps the most rigorous mathematical formulation, and these acoustics-based analogue models really work best in the absence of vorticity, when the medium has an irrotational flow. This physical restriction makes it difficult to mimic the particularly interesting case of rotating astrophysical spacetimes, spacetimes with nonzero angular momentum, and in the current article we explore the extent to which one might hope to be able to develop an analogue model for astrophysical spacetimes with angular momentum (thereby implying vorticity in the 4-velocity of the medium). We shall focus on two particular analogue models: (1) the use of a charged BEC as the background medium, where new results concerning the interplay between healing length and London penetration depth are a key technical improvement, and (2) new results regarding the Gordon metric associated with an isotropic fluid medium.
DOI
10.1103/PhysRevD.99.044025
WOS
WOS:000458820400005
Archivio
http://hdl.handle.net/20.500.11767/88314
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85062342514
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.044025
https://arxiv.org/abs/1802.04785
Diritti
open access
Soggetti
  • Physics and Astronomy...

  • Settore FIS/05 - Astr...

Web of Science© citazioni
7
Data di acquisizione
Mar 27, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback