Logo del repository
  1. Home
 
Opzioni

Copper accumulation in five weed species commonly found in the understory vegetation of Mediterranean vineyards

Mattiello A.
•
Novello N.
•
Cornu J. -Y.
altro
Poscic F.
2023
  • journal article

Periodico
ENVIRONMENTAL POLLUTION
Abstract
Copper (Cu) concentration in agricultural soils often exceeds toxicological limits due to application of Cu-based fungicides. The potential of weeds for their use as functional cover plants in vineyard management and phytoremediation practices is little explored. We identified five weed species widely present in vineyards and assessed their Cu accumulation from eleven Mediterranean vineyards (soil Cu: 60–327 μg g−1) and two adjacent control sites (soil Cu: 15–30 μg g−1). Soils and plants were characterized by their physico-chemical properties and nutrient content. We applied multivariate techniques to analyze relationships between soil properties and leaf nutrient composition. Copper tolerance and accumulation traits were further tested in hydroponics using a series of CuSO4 concentrations (0.1–16 μM). Under field conditions, the highest Cu concentration in both roots and leaves were found in Lolium perenne (221 and 461 μg g−1, respectively), followed by Plantago lanceolata, Rumex obtusifolius and Taraxacum officinale (>100 μg g−1 Cu in leaves). Only one species, Trifolium repens, did not accumulate remarkable Cu concentrations. Overall, and as revealed by the multivariate analyses, leaf Cu concentration was driven by soil Cu content, soil texture, organic matter, nitrogen, and Cu uptake into roots. However, functional regression analysis and controlled experiments suggested that Cu might be additionally absorbed from the deposits on the leaf surface related to the Cu-fungicide treatments and soil dust. Our study highlights the importance of intra-specific variability in Cu accumulation among weed species in Cu-contaminated agricultural soils. Further validation of these findings under controlled conditions could provide essential insights for optimizing management and remediation strategies.
DOI
10.1016/j.envpol.2023.121675
WOS
WOS:000990405100001
Archivio
https://hdl.handle.net/11390/1250965
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85153482456
https://ricerca.unityfvg.it/handle/11390/1250965
Diritti
metadata only access
Soggetti
  • Air dust

  • Contamination

  • Nutrient

  • Phytoremediation

  • Tolerance

  • Toxicity

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback