Logo del repository
  1. Home
 
Opzioni

On an inequality from Information Theory

Horst, Alzer
2014-12-23
  • Controlled Vocabulary...

Abstract
We prove that the inequalities $$ \sum_{j=1}^n \frac{q_j (q_j-p_j)^2}{q_j^2 +m_j^{\alpha} M_j^{1-\alpha}} \leq \sum_{j=1}^n p_j \log \frac{p_j}{q_j} \leq \sum_{j=1}^n \frac{q_j (q_j-p_j)^2}{q_j^2 +m_j^{\beta} M_j^{1-\beta}} \quad{(\alpha, \beta \in \mathbb{R})}, $$ where $$ m_j=\min(p_j^2, q_j^2) \quad\mbox{and} \quad{M_j=\max(p_j^2, q_j^2)} \quad(j=1,...,n), $$ hold for all positive real numbers $p_j, q_j$ $(j=1,...,n; n\geq 2)$ with $\sum_{j=1}^n p_j=\sum_{j=1}^n q_j$ if and only if $\alpha\leq 1/3$ and $\beta\geq 2/3$. This refines a result of Halliwell and Mercer, who showed that the inequalities are valid with $\alpha=0$ and $\beta=1$.
Archivio
http://hdl.handle.net/10077/10639
Diritti
open access
Soggetti
  • Gibbs'inequality

  • Kullback-Leibler dive...

  • information theory

  • log-function

Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback