Logo del repository
  1. Home
 
Opzioni

Efficient and Highly Selective Copper(II) Transport across a Bulk Liquid Chloroform Membrane Mediated by Lipophilic Dipeptides

Marco C. Cleij
•
Paolo Scrimin
•
TECILLA, PAOLO
•
Umberto Tonellato
1997
  • journal article

Periodico
JOURNAL OF ORGANIC CHEMISTRY
Abstract
Several structurally simple N-monoalkylated and -dialkylated dipeptides made of alpha-amino acids Gly, Phe, and Leu, 1-11, were synthesized and investigated as carriers for the transport of Cu(II), Zn(II), and Ni(II) from an aqueous pH = 5.6 buffer source to a 0.1 M HCl receiving phase across a bulk chloroform membrane. The proton-driven translocation was followed during the process by analyzing the metal ion concentrations in the three phases. The transport efficiency depends on the ease of formation of a neutral complex with Cu(II) (the peptide group and carboxylic acid being deprotonated) at the source-chloroform interface and on that of its disruption by protonation at the receiving phase: the carrier's Lipophilicity favors the metal ion uptake and not the release. By modulating the length of the N-alkyl chains and the hydrophobicity of the dipeptide moiety, a quite remarkable transport efficiency was observed for Cu(II), in most cases superior to that of the industrial extractant Kelex 100. Moreover, using L,L- and L,D-N-octyl-PheLeu as carriers, remarkable diastereomeric effects were observed in the rate of uptake and release of Cu(II) ion although the differences mutually compensate in the overall transport rate. Under the conditions used the carriers are much less effective in the translocation of Zn(II) and Ni(II) and their transport efficiency drops dramatically in the presence of Cu(II), the latter being favored by factors of 1.2 x 10(3) and > 10(4), respectively. Such very high selectivities depend on the fact that only Cu(II) among other transition metal ions Can form neutral complexes at the pH value of the source phase.
DOI
10.1021/jo9703257
Archivio
http://hdl.handle.net/11368/2562513
Diritti
metadata only access
Soggetti
  • chimica supramolecola...

  • trasporto

  • rame(II)

Scopus© citazioni
21
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
21
Data di acquisizione
Mar 27, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback