In this paper, we focus our attention on the fragment of
Halpern and Shoham's modal logic of intervals (HS) that
features four modal operators corresponding to the
relations ``meets'', ``met by'', ``begun by'', and
``begins'' of Allen's interval algebra (AAbarBBbar logic).
AAbarBBbar properly extends interesting interval temporal
logics recently investigated in the literature, such as the
logic BBbar of Allen's ``begun by/begins'' relations and
propositional neighborhood logic AAbar, in its many
variants (including metric ones). We prove that the satisfiability
problem for AAbarBBbar, interpreted over finite linear orders,
is decidable, but not primitive recursive (as a matter of fact,
AAbarBBbar turns out to be maximal with respect to decidability). Then, we show that it becomes undecidable when AAbarBBbar is interpreted over classes of linear orders that contains at least one linear order with an infinitely ascending sequence, thus including the natural time flows N, Z, Q, and R.