Logo del repository
  1. Home
 
Opzioni

Inverting the discrete curl operator: A novel graph algorithm to find a vector potential of a given vector field

Pitassi S.
•
Ghiloni R.
•
Specogna R.
2022
  • journal article

Periodico
JOURNAL OF COMPUTATIONAL PHYSICS
Abstract
We provide a novel framework to compute a discrete vector potential of a given discrete vector field on arbitrary polyhedral meshes. The framework exploits the concept of acyclic matching, a combinatorial tool at the core of discrete Morse theory. We introduce the new concept of complete acyclic matchings and we show that they give the same end result of Gaussian elimination. Basically, instead of doing costly row and column operations on a sparse matrix, we compute equivalent cheap combinatorial operations that preserve the underlying sparsity structure. Currently, the most efficient algorithms proposed in literature to find discrete vector potentials make use of tree-cotree techniques. We show that they compute a special type of complete acyclic matchings. Moreover, we show that the problem of computing them is equivalent to the problem of deciding whether a given mesh has a topological property called collapsibility. This fact gives a topological characterization of well-known termination problems of tree-cotree techniques. We propose a new recursive algorithm to compute discrete vector potentials. It works directly on basis elements of 1- and 2-chains by performing elementary Gaussian operations on them associated with acyclic matchings. However, the main novelty is that it can be applied recursively. Indeed, the recursion process allows us to sidetrack termination problems of the standard tree-cotree techniques. We tested the algorithm on pathological triangulations with known topological obstructions. In all tested problems we observe linear computational complexity as a function of mesh size. Moreover, the algorithm is purely graph-based so it is straightforward to implement and does not require specialized external procedures. We believe that our framework could offer new perspectives to sparse matrix computations.
DOI
10.1016/j.jcp.2022.111404
Archivio
http://hdl.handle.net/11390/1229617
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85133675641
https://ricerca.unityfvg.it/handle/11390/1229617
Diritti
metadata only access
Soggetti
  • Collapsibility

  • Compatible discretiza...

  • Polyhedral meshe

  • Source field

  • Tree-cotree technique...

  • Vector potential

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback