The Langevin equation used to model Brownian motion includes a stochastic process that is routinely assumed to be a Gaussian white noise. Spatial correlations of the noise are usually ruled out, and the paths traced by the random walkers are statistically independent. In this study, I consider instead noise which is white in time and has a Gaussian correlation in space, and by means of numerical simulation, I show how the spatial correlation determines the time evolution of the spatial separation of random walkers.