Logo del repository
  1. Home
 
Opzioni

Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest.

BIOLO, GIANNI
•
CIOCCHI B
•
STULLE M
altro
GUARNIERI, GIANFRANCO
2007
  • journal article

Periodico
THE AMERICAN JOURNAL OF CLINICAL NUTRITION
Abstract
BACKGROUND: Muscle inactivity and low energy intake commonly occur in persons with acute or chronic disease, in astronauts during space flight, and during aging. OBJECTIVE: We used a crossover design to investigate the effects of the interactions of inactivity and calorie restriction on whole-body composition and protein kinetic regulation in 9 healthy volunteers. DESIGN: Lean body mass (LBM) was measured by using dual-energy X-ray absorptionmetry before and at the end of 14-d periods of bed rest (B) and controlled ambulation (A) in patients receiving eucaloric (E) or hypocaloric (H) (approximately 80% of total energy expenditure) diets. Whole-body leucine kinetics were determined at the end of the 4 study periods by using a standard stable-isotope technique in the postabsorptive state and during a 3-h infusion of a 0.13 g x kg LBM(-1) x h(-1) amino acid mixture. RESULTS: In the postabsorptive state, we found a significant (P = 0.04) bed rest x hypocaloric diet interaction for the rate of leucine oxidation, an index of net protein catabolism (A+E: 0.23 +/- 0.01; B+E: 25 +/- 0.01; A+H: 0.23 +/- 0.01; B+H: 0.28 +/- 0.01 micromol x min(-1) x kg LBM(-1)). Bed rest significantly (P < 0.01) decreased amino acid-mediated stimulation of nonoxidative leucine disappearance, an index of protein synthesis (A+E: 35 +/- 2%; B+E: 30 +/- 2%; A+H: 41 +/- 3%; B+H: 32 +/- 2%). B+H decreased LBM by 1.10 +/- 0.1 kg, which is significantly (P < 0.01) greater than the decrease seen with A+E, A+H, or B+E. CONCLUSION: Calorie restriction enhanced the catabolic response to inactivity by combining greater protein catabolism in the postabsorptive state with an impaired postprandial anabolic utilization of free amino acids.
WOS
WOS:000248629700014
SCOPUS
2-s2.0-34547907489
Archivio
http://hdl.handle.net/11368/1695128
Diritti
metadata only access
Soggetti
  • Caloric Restriction

  • physical inactivity

  • Lean body mass

Scopus© citazioni
99
Data di acquisizione
Jun 7, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback