Logo del repository
  1. Home
 
Opzioni

Quantum curves and q-deformed Painlevé equations

Bonelli G.
•
Grassi A.
•
Tanzini A.
2019
  • journal article

Periodico
LETTERS IN MATHEMATICAL PHYSICS
Abstract
We propose that the grand canonical topological string partition functions satisfy finite-difference equations in the closed string moduli. In the case of genus one mirror curve, these are conjectured to be the q-difference Painlevé equations as in Sakai’s classification. More precisely, we propose that the tau functions of q-Painlevé equations are related to the grand canonical topological string partition functions on the corresponding geometry. In the toric cases, we use topological string/spectral theory duality to give a Fredholm determinant representation for the above tau functions in terms of the underlying quantum mirror curve. As a consequence, the zeroes of the tau functions compute the exact spectrum of the associated quantum integrable systems. We provide details of this construction for the local P1× P1 case, which is related to q-difference Painlevé with affine A1 symmetry, to SU(2) Super Yang–Mills in five dimensions and to relativistic Toda system. © 2019, Springer Nature B.V.
DOI
10.1007/s11005-019-01174-y
WOS
WOS:000482387500002
Archivio
http://hdl.handle.net/20.500.11767/103734
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85064263886
https://arxiv.org/abs/1710.11603
Diritti
open access
Soggetti
  • Painlevé equation

  • Spectral theory

  • Supersymmetric gauge ...

  • Topological string th...

  • Settore MAT/07 - Fisi...

  • Settore FIS/02 - Fisi...

Scopus© citazioni
21
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
37
Data di acquisizione
Mar 15, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback