Logo del repository
  1. Home
 
Opzioni

Acid-induced demineralisation of human enamel as a function of time and pH observed using X-ray and polarised light imaging

Harper R. A.
•
Shelton R. M.
•
James J. D.
altro
Landini G.
2020
  • journal article

Periodico
ACTA BIOMATERIALIA
Abstract
Acid-induced enamel demineralisation affects many individuals either by exposure to acidic diets, acidic gas pollution (dental erosion) or to dental plaque acids (dental caries). This study aimed to develop in situ X-ray and light imaging methods to determine progression of enamel demineralisation and the dynamic relationship between acid pH and mineral density. Hourly digital microradiograph time-lapse sequences showed the depth of enamel demineralisation in 500 μm thick sections progressed with time from the surface towards the dentine following a power-law function, which was 21% faster than the lateral demineralisation progression after exposure for 85 h to lactic acid (10%, pH 2.2). The minimum greyscale remaining (mineral content) within the induced enamel lesion followed an exponential decay, while the accumulated total greyscale loss with time was linear, which showed a constant anisotropic mineral release within the enamel architecture. This 85 h demineralisation method studied by polarised light microscopy time-lapse sequences showed that once the demineralisation front reached the enamel Hunter-Schreger bands, there was preferential demineralisation along those bands. Mineral density loss was linear with increasing pH acidity between pH 5.2 and pH 4.0 (with 0.4 pH increments) when incubated over a 3-week period exposed to 0.5% lactic acid. At pH 4.0, there was complete mineral loss in the centre of the demineralised area after the 3-week period and the linear function intercepted the x-axis at ~ pH 5.5, near the critical pH for hydroxyapatite (HAp). These observations showed how intrinsic enamel structure and pH affected the progression of demineralisation. Statement of significance: Hydroxyapatite crystallites (HAp) in human enamel dissolve when exposed to an acidic environment but little is known about how the intrinsic structures in enamel and pH influence the demineralisation kinetics. We have developed a time-lapse in situ microradiography method to quantify microscopic anisotropic mineral loss dynamics in response to an acid-only caries model. Correlation with polarised light microscopy time-lapse sequences showed that larger structures in enamel also influence demineralisation progression as demineralisation occurred preferentially along the Hunter-Schreger bands (decussating prismatic enamel). The pH-controlled enamel mineral release in a linear manner quantifying the relationship between HAp orientation and acid solubility. These findings should direct the development of improved anti-demineralisation/ remineralisation treatments to retain/ restore the natural intrinsic enamel structure.
DOI
10.1016/j.actbio.2020.04.045
WOS
WOS:000608110700007
Archivio
http://hdl.handle.net/11390/1187040
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85085175534
Diritti
metadata only access
Soggetti
  • Demineralisation

  • Enamel

  • Imaging

  • In situ

  • Kinetics

Scopus© citazioni
8
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
17
Data di acquisizione
Mar 11, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback