Logo del repository
  1. Home
 
Opzioni

Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams

Faridmehr, Iman
•
Nehdi, Moncef L.
•
Sahraei, Mohammad Ali
altro
Bedon, Chiara
2025
  • journal article

Periodico
INTERNATIONAL JOURNAL OF LIGHTWEIGHT MATERIALS AND MANUFACTURE
Abstract
This study rigorously assesses the shear capacity of fiber-reinforced polymer (FRP) reinforced concrete (RC) beams as a lightweight material alternative, scrutinizing the efficacy of the Eurocode and ACI design codes. Leveraging a dataset of 260 experimental FRP-RC beam cases, two distinct Artificial Neural Network (ANN) models were developed using the Levenberg-Marquardt algorithm. Beams with and without stirrups were considered, with parameters including beam width (b), depth (d), length (L), concrete compressive strength (fc′), FRP modulus of elasticity (Efr, Efs) and FRP reinforcement ratios (ρf, ρfs). Multi-objective optimization was deployed to integrate Genetic Algorithms (GA) and fmincon to optimize beam parameters for maximizing the shear capacity, Vc. Sensitivity analysis allowed to quantify the influence of each parameter, revealing that b and d significantly affect Vc, with sensitivity scores of 0.39 and 0.35, respectively. The optimization process, highlighted by a 3D scatter plot, dynamically illustrated trade-offs among key design parameters (ρf, ρfs, d), giving insights into the complex interplay in FRP beam design. The hybrid intelligence models reached superior predictive accuracy over traditional codes, achieving R2 values of 0.89. Notably, for beams without stirrups, model predictions closely matched experimental data, with a lower average ratio (1.02) compared to Eurocode (1.65) and ACI (1.58). Principal Component Analysis (PCA) has elucidated the intricate interactions among variables, thereby deepening insights into the structural dynamics of FRP-RC beams. Incorporating artificial intelligence, sophisticated optimization methodologies, and thorough statistical evaluations establishes a holistic approach for the structural examination of FRP-RC beams, providing improved precision and valuable viewpoints for the refinement of future designs.
DOI
10.1016/j.ijlmm.2024.07.003
Archivio
https://hdl.handle.net/11368/3102558
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85210966537
https://www.sciencedirect.com/science/article/pii/S2588840424000672
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3102558/1/keai_1-s2.0-S2588840424000672-main.pdf
Soggetti
  • Fiber-Reinforced Poly...

  • Multi-objective optim...

  • Sensitivity analysi

  • Artificial neural net...

  • Shear capacity

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback