Logo del repository
  1. Home
 
Opzioni

A physical model for the evolving UV luminosity function of high redshift galaxies and their contribution to the cosmic reionization

Cai, Z. Y.
•
Lapi, A.
•
Bressan, A.
altro
Danese, L.
2014
  • journal article

Periodico
THE ASTROPHYSICAL JOURNAL
Abstract
We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit ≲ 109.8 M , which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ≃ 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV ≲ -18) can keep the universe fully ionized up to z ≃ 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ≃ 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ≃ 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ≃ 9-10. Consistency with CMB data can be achieved if M crit ≃ 108.5 M , implying that the UV luminosity functions extend to M UV ≃ -13, although the corresponding τes is still on the low side of CMB-based estimates. © 2014. The American Astronomical Society. All rights reserved..
DOI
10.1088/0004-637X/785/1/65
WOS
WOS:000335639300065
Archivio
http://hdl.handle.net/20.500.11767/15989
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84897419680
https://arxiv.org/abs/1403.0055
http://cdsads.u-strasbg.fr/abs/2014ApJ...785...65C
Diritti
open access
Soggetti
  • early universe

  • galaxies: high redshi...

  • ultraviolet: galaxies...

  • Settore FIS/05 - Astr...

Scopus© citazioni
51
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
56
Data di acquisizione
Mar 6, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback