Logo del repository
  1. Home
 
Opzioni

Insights into gut microbiota metabolism of dietary lipids: the case of linoleic acid

Huyan Z.
•
Pellegrini N.
•
Steegenga W.
•
Capuano E.
2022
  • journal article

Periodico
FOOD & FUNCTION
Abstract
It has been recognized that, next to dietary fibre and proteins, gut microbiota can metabolize lipids producing bioactive metabolites. However, the metabolism of dietary lipids by human gut microbiota has been poorly explored so far. This study aimed to examine the change in lipids, particularly linoleic acid (LA), induced by the chemical form of lipids and the presence of the plant matrix. Short-chain fatty acid (SCFA) production was monitored to get an insight into microbial activity. Free LA, glyceryl trilinoleate and soybean oil as well as digested intact (DS) and broken (BS) soybean cells were subjected to in vitro fermentation using human faecal inoculums. Confocal microscopy was used to visualize the soybean cell integrity. Three LA metabolites, including two conjugated fatty acids (CLAs, 9z,11e and 9e,11e) and 12hydroxy, 9z C18:1, were identified and monitored. Free LA addition improved the LA metabolite production but reduced SCFA concentrations compared to trilinoleate and soybean oil. Breaking cell integrity had impacts on CLA, hydroxy C18:1 and SCFA production and free fatty acid release within the first 24 h of fermentation, but this effect vanished with time. In contrast, soybean oil only increased free LA release and hydroxy C18:1 production. The content of several FAs decreased during fermentation suggesting a substantial conversion in microbial metabolites. Besides, LA metabolites were also identified in the fermentation pellets suggesting the incorporation of microbial FA metabolites into bacterial cells. This study expands our understanding of microbial metabolism of dietary lipids with a special emphasis on the role of food- and diet-related factors.
DOI
10.1039/d1fo04254h
WOS
WOS:000774185400001
Archivio
http://hdl.handle.net/11390/1225114
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85128576338
https://ricerca.unityfvg.it/handle/11390/1225114
Diritti
open access
Soggetti
  • Fatty Acid

  • Fatty Acids, Volatile...

  • Human

  • Soybean Oil

  • Gastrointestinal Micr...

  • Linoleic Acid

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback