Logo del repository
  1. Home
 
Opzioni

The redshift evolution of the mean temperature, pressure, and entropy profiles in 80 spt-selected galaxy clusters

McDonald, M.
•
Benson, B. A.
•
Vikhlinin, A.
altro
Zenteno, A.
2014
  • journal article

Periodico
THE ASTROPHYSICAL JOURNAL
Abstract
We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg2 South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ∼20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < 1.5R500, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < 1.2) clusters are slightly (∼30%) cooler both in the inner (r < 0.1R500) and outer (r>R500) regions than their low-z (0.3 < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R500 of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r 0.7R500—this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r R500 in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (∼3×) rate at which group-mass (∼2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z ∼ 1. This work demonstrates a powerful method for inferring spatially resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.
DOI
10.1088/0004-637X/794/1/67
WOS
WOS:000342581200067
Archivio
http://hdl.handle.net/11368/2963129
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84907575791
http://iopscience.iop.org/0004-637X/794/1/67/pdf/0004-637X_794_1_67.pdf
Diritti
metadata only access
Soggetti
  • early universe

  • galaxies: clusters: g...

  • galaxies: clusters: i...

  • X-rays: galaxies:clus...

  • Astronomy and Astroph...

  • Space and Planetary S...

Web of Science© citazioni
78
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback