Logo del repository
  1. Home
 
Opzioni

Enantioselective palladium-catalyzed hydrosilylation of styrene: Detailed reaction mechanism from first-principles and hybrid QM/MM molecular dynamics simulations

MAGISTRATO, ALESSANDRA
•
WOO TK
•
TOGNI A
•
ROTHLISBERGER U.
2004
  • journal article

Periodico
ORGANOMETALLICS
Abstract
The mechanism of the enantioselective hydrosilylation of styrene catalyzed by Pd-0 species generated in situ from dichloro {1-{(R)-1-[(S)-2(diphenylphosphino-kappaP)ferrocenyl]ethyl}-3-trimethylphenyl-5-1H-pyrazole-kappaN}palladium, 1, has been investigated in detail through ab initio molecular dynamics and hybrid ab initio molecular dynamics/molecular mechanics (QM/MM) calculations. Different QM/MM models have been adopted in order to probe the specific steric and electronic contributions of different substituents. The catalytic cycle is initiated by the formation of a weakly bound pi-complex (DeltaE approximate to -5.4 kcal/mol) under simultaneous detachment of the pyrazole ligand. In agreement with a Chalk-Harrod mechanism, this is followed by the migratory insertion of the hydride, which leads to a eta(3)-coordination mode of the benzylic fragment. The significant stabilization of the allylic intermediate (DeltaE approximate to -11 kcal/mol) is responsible for the high regioselectivity of the reaction (as well as for its enantioselectivity). The rate-determining step with an activation barrier of 16 kcal/mol is the migration of the silyl ligand to the a-carbon of the substrate with concomitant closure of the ligand chelate ring. This step leads to the formation of an intermediate in which the phenyl moiety of the product remains coordinated in an eta(2)-mode to the palladium. The addition of trichlorosilane leads to product formation and hence to the regeneration of the catalyst. A unimolecular reaction pathway on the other hand, in which the transfer of the silyl ligand to the benzylic fragment is concerted with the addition of a molecule of HSiCl3 to the catalyst, is disfavored by an activation barrier of similar to30 kcal/mol.
DOI
10.1021/om049969c
WOS
WOS:000222093700022
Archivio
http://hdl.handle.net/20.500.11767/32386
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-3042739133
Diritti
open access
Soggetti
  • Settore BIO/10 - Bioc...

  • Settore FIS/07 - Fisi...

Scopus© citazioni
30
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
29
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback