Logo del repository
  1. Home
 
Opzioni

A control system for preventing cavitation of centrifugal pumps

Cucit, Valentino
•
Burlon, Fabio
•
Fenu, Gianfranco
altro
Simonato, Michele
2018
  • journal article

Periodico
ENERGY PROCEDIA
Abstract
Cavitation is a well-known phenomenon that may occur, among other turbo-machines, in centrifugal pumps and can result in severe damage of both the pump and the whole hydraulic system. There are situations in which, in principle, the cavitation could be avoided by detecting the condition of incipient cavitation, and changing slightly the working point of the whole system in order to move away from that condition. In the present paper two simple closed-loop control strategies are implemented, acting on the pump's rotational speed and fed by the measurements of a set of inertial sensors. In particular, the research is focused on a centrifugal pump normally employed in hydraulic systems. The pump operates in a dedicated test rig, where cavitation can be induced by acting on a reservoir's pressure. Three accelerometers are installed in the pump body along three orthogonal axes. An extensive set of experiments has been carried out at different flow rates and a number of signals' features both in the time domain and in the frequency domain have been considered as indicators of incipient cavitation. The amount of energy of the signal captured by the accelerometer in the component orthogonal to the flow direction, in the band from 10 to 12.8 kHz, demonstrated to be effective in detecting the incipient cavitation, by selecting a proper (condition-dependent) threshold. Therefore, two simple controllers have been designed: the first regulates the speed of the pump, to recover from cavitation, bringing the indicator back to the nominal value, while the second allows to reduce the pump's rotational speed when the cavitation detector indicates the incipient cavitation and restoring the nominal speed when possible. The latter approach is rather general, because the threshold-based detector can be substituted by any detector providing binary output. Experimental results are reported that demonstrate the effectiveness of the approach.
DOI
10.1016/j.egypro.2018.08.074
WOS
WOS:000480453000031
Archivio
http://hdl.handle.net/11368/2930958
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85056594251
https://doi.org/10.1016/j.egypro.2018.08.074
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/bitstream/11368/2930958/1/1-s2.0-S1876610218303679-main.pdf
Soggetti
  • Cavitation

  • Centrifugal pump

  • Closed-loop control

Scopus© citazioni
10
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
7
Data di acquisizione
Mar 18, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback