Logo del repository
  1. Home
 
Opzioni

The Cyclicity of a Cubic System

LEVANDOVSKYY V
•
LOGAR, ALESSANDRO
•
ROMANOVSKI V.
2009
  • journal article

Periodico
OPEN SYSTEMS & INFORMATION DYNAMICS
Abstract
Using algorithms of computational algebra we prove that at most eight limit cycles can bifurcate from any center or focus at the origin of the cubic system x = ̇ λx + i(x − a−12 x2 − a20 x3 − a11 x2 x − a02 x ̄2 ). That is, an upper bound for cyclicity of the ̄ ̄ x origin of the system is eight.
WOS
WOS:000272260800008
Archivio
http://hdl.handle.net/11368/2290719
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77952957286
http://www.worldscinet.com/osid/16/1604/S1230161209000323.html
Diritti
metadata only access
Soggetti
  • Cyclicity

  • Cubic System

  • gr\"obner basi

  • radical of an ideal

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback