Logo del repository
  1. Home
 
Opzioni

Krichever Maps, Faà di Bruno Polynomials, and Cohomology in KP Theory

Falqui, Gregorio
•
Reina, Cesare
•
Zampa, A.
1997
  • journal article

Periodico
LETTERS IN MATHEMATICAL PHYSICS
Abstract
We study the geometrical meaning of the Faà di Bruno polynomials in the context of KP theory. They provide a basis in a subspace W of the universal Grassmannian associated to the KP hierarchy. When W comes from geometrical data via the Krichever map, the Faà di Bruno recursion relation turns out to be the cocycle condition for (the Welters hypercohomology group describing) the deformations of the dynamical line bundle on the spectral curve together with the meromorphic sections which give rise to the Krichever map. Starting from this, one sees that the whole KP hierarchy has a similar cohomological meaning.
DOI
10.1023/A:1007323118991
WOS
WOS:A1997YL67400005
Archivio
http://hdl.handle.net/20.500.11767/59282
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0141578992
https://arxiv.org/abs/solv-int/9704010
Diritti
closed access
Soggetti
  • Faa di Bruno polynom...

  • KP hierarchy

  • hypercohomology group...

  • Settore MAT/07 - Fisi...

Scopus© citazioni
4
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
5
Data di acquisizione
Mar 26, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback