Logo del repository
  1. Home
 
Opzioni

Metabolic rate and climate change across latitudes: Evidence of mass-dependent responses in aquatic amphipods

Milad Shokri
•
Francesco Cozzoli
•
Fabio Vignes
altro
Alberto Basset
2022
  • journal article

Periodico
JOURNAL OF EXPERIMENTAL BIOLOGY
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects individuals’ metabolism independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual Standard Metabolic Rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC-RCP2.6. As a model organism we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species’ distributional range, with individuals varying in body mass (0.4-13.57mg). Overall, we found that the effect of temperature on SMR is mass-dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old ones (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the large individuals’ mass-specific SMR responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) due to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
DOI
10.1242/jeb.244842
WOS
WOS:000923904300013
Archivio
https://hdl.handle.net/11368/3034380
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85142940007
https://journals.biologists.com/jeb/article/225/22/jeb244842/284638/Metabolic-rate-and-climate-change-across-latitudes
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3034380/3/jeb244842.pdf
Soggetti
  • metabolic rate

  • body size

  • temperature

  • global warming

  • latitude

  • thermal tolerance

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback