Logo del repository
  1. Home
 
Opzioni

Chiral Lipophilic Ligands. 1. Enantioselective Cleavage of .alpha.-Amino Acid Esters in Metallomicellar Aggregates

Paolo Scrimin
•
TECILLA, PAOLO
•
Umberto Tonellato
1994
  • journal article

Periodico
JOURNAL OF ORGANIC CHEMISTRY
Abstract
Several chiral ligands (1a,b, 2a-d), their marked lipophilic structure featuring a binding subunit comprising a 2-substituted pyridine, a tertiary amine, and a hydroxyl, have been synthesized and their complexes with Cu(II), Zn(II), or Co(II) ions investigated in homomicellar or comicellar aggregates as enantioselective catalysts of the cleavage of p-nitrophenyl esters of alpha-amino acids (Phe, Phg, Leu). Rate accelerations up to 3 orders of magnitude over the Cu(II) catalyzed hydrolysis and enantioselectivities ranging from; 3.2 to 11.6 have been observed. In each case explored, the chiral ligand reacts faster with the enantiomeric substrate of opposite absolute configuration. Several pieces of evidence indicate that the effective cleavage process in micellar aggregates involves the following: (a) the formation of a ternary (ligand-metal ion-substrate) complex; (b) within such a complex, a nucleophilic attack of the ligand hydroxyl on the substrate to give a transacylation intermediate; and (c) the metal ion promoted hydrolysis of the transacylation intermediate with a relatively fast turnover of the catalyst. Such a mode of action does not operate outside or in the absence of micellar aggregates: in this case; the hydroxyl is displaced by water that acts as the nucleophile ina slower (less enantioselective) process. The enantioselectivity of the transacylation process appears to be little affected by the steric interaction between the substituents at the chiral center of the amino acid ester and of the ligand. We suggest that the enantioselectivity arises from a different hydration, due to steric reasons, of the diastereomeric complexes comprising the two enantiomers of the substrate. As a consequence, the relevance of the competing mechanisms of cleavage of the ester, the first one, faster, involving the hydroxyl and the second one, slower, involving a Cu(II)-bound water molecule, may be different. In the case of the less hydrated, more hydrophobic R-S or S-R complex the former, faster, mode of cleavage may be more relevant than in the case of the more hydrated, less hydrophobic, S-S or R-R complex.
DOI
10.1021/jo00094a034
Archivio
http://hdl.handle.net/11368/2562861
Diritti
metadata only access
Soggetti
  • chimica supramolecola...

  • metallomicelle

  • catalisi

  • idrolisi

  • amminoacidi

Web of Science© citazioni
69
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback