Logo del repository
  1. Home
 
Opzioni

Radial solutions of the Dirichlet problem for a class of quasilinear elliptic equations arising in optometry

Chiara Corsato
•
Colette De Coster
•
Noemi Flora
•
Pierpaolo Omari
2019
  • journal article

Periodico
NONLINEAR ANALYSIS
Abstract
This paper deals with the quasilinear elliptic problem egin{align*} { m -div} left({ abla u}/{sqrt{1 + | abla u|^2}} ight)+a(x) u &= b(x)/sqrt{1 + | abla u|^2} ext { in } B, ;; u=0 , ext{ on } partial B, end{align*} where $B$ is an open ball in $RR^N$, with $Nge 2$, and $a,b in C^1(overline B) $ are given radially symmetric functions, with $a(x) ge 0$ in $B$. This class of anisotropic prescribed mean curvature equations appears in the description of the geometry of the human cornea, as well as in the modeling theory of capillarity phenomena for compressible fluids. Unlike all previous works published on these subjects, existence and uniqueness of solutions of the above problem are here analyzed in the case where the coefficients $a, b$ are not necessarily constant and no sign condition is assumed on $b$.
DOI
10.1016/j.na.2018.11.001
WOS
WOS:000459021900002
Archivio
http://hdl.handle.net/11368/2932001
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057840630
https://www.sciencedirect.com/science/article/pii/S0362546X18302773
Diritti
open access
license:copyright editore
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/2932001
Soggetti
  • prescribed mean curva...

  • Dirichlet boundary co...

  • classical solution

  • existence

  • uniquene

  • a priori bound

  • comparison principle

Web of Science© citazioni
6
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback