Logo del repository
  1. Home
 
Opzioni

Complex Dynamics in a ODE Model Related to Phase Transition

PAPINI, Duccio
•
ZANOLIN, Fabio
2017
  • journal article

Periodico
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS
Abstract
Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation −x ̈+(1+ε−1A(t))G′(x)=0, where A(t) is a nonnegative T-periodic function and ε>0 is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima x0 and x1 of G(x). Such solutions stay close to x0 or x1 in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case x0=0 and x1=1.
DOI
10.1007/s10884-015-9514-2
WOS
WOS:000410258400017
Archivio
http://hdl.handle.net/11390/1091946
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84953244354
https://link.springer.com/article/10.1007/s10884-015-9514-2
Diritti
open access
Soggetti
  • Allen–Cahn equation

  • Complex dynamic

  • Non-autonomous equati...

  • Periodic solution

  • Analysis

Scopus© citazioni
1
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
1
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback