Logo del repository
  1. Home
 
Opzioni

Testing Different Tectonic Models for the Source of the M w 6.5, 30 October 2016, Norcia Earthquake (Central Italy): A Youthful Normal Fault, or Negative Inversion of an Old Thrust?

Bonini L.
•
Basili R.
•
Burrato P.
altro
Valensise G.
2019
  • journal article

Periodico
TECTONICS
Abstract
We adopted a multidisciplinary approach to investigate the seismotectonic scenario of the 30 October 2016, Mw 6.5, Norcia earthquake, the largest shock of the 2016–2017 central Italy earthquake sequence. First, we used seismological and geodetic data to infer the dip of the main slip patch of the seismogenic fault that turned out to be rather low‐angle (~37°). To evaluate whether this is an acceptable dip for the main seismogenic source, we modeled earthquake deformation using single‐ and multiple‐fault models deduced from aftershock pattern analyses. These models show that the coseismic deformation generated by the Norcia earthquake is coherent with slip along a rather shallow‐dipping plane. To understand the geological significance of this solution, we reconstructed the subsurface architecture of the epicentral area. As the available data are not robust enough to converge on a single fault model, we built three different models encompassing all major geological evidence and the associated uncertainties, including the tectonic style and the location of major décollement levels. In all models the structures derived from the contractional phase play a significant role: from controlling segmentation to partially reusing inherited faults, to fully reactivating in extension a regional thrust, geometrically compatible with the source of the Norcia earthquake. Based on our conclusions, some additional seismogenic sources falling in the eastern, external portions of the Apennines may coincide with inherited structures. This may be a common occurrence in this region of the chain, where the inception of extension is as recent as Middle‐Upper Pleistocene.
DOI
10.1029/2018TC005185
WOS
WOS:000464828700010
Archivio
http://hdl.handle.net/11368/2947311
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85063288219
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018TC005185
Diritti
open access
license:copyright editore
license:copyright editore
license:digital rights management non definito
license:digital rights management non definito
FVG url
https://arts.units.it/request-item?handle=11368/2947311
Soggetti
  • 2016 central Italy ea...

  • geodetic inversion

  • tectonic models

Web of Science© citazioni
31
Data di acquisizione
Mar 26, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback