Logo del repository
  1. Home
 
Opzioni

Convergent series for quasi-periodically forced strongly dissipative systems

Livia Corsi
•
Guido Gentile
•
FEOLA, Roberto
2013
  • journal article

Periodico
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
Abstract
We study the ordinary differential equation εẍ + ẋ + εg(x) = εf(ωt), with f and g analytic and f quasi-periodic in t with frequency vector ω ∈ Rd. We show that if there exists c0 ∈ R such that g(c0) equals the average of f and the first non-zero derivative of g at c0 is of odd order n{fraktur}, then, for ε small enough and under very mild Diophantine conditions on ω, there exists a quasi-periodic solution close to c0, with the same frequency vector as f. In particular if f is a trigonometric polynomial the Diophantine condition on ω can be completely removed. This extends results previously available in the literature for n{fraktur} = 1. We also point out that, if n{fraktur} = 1 and the first derivative of g at c0 is positive, then the quasi-periodic solution is locally unique and attractive. © 2013 World Scientific Publishing Company.
DOI
10.1142/s0219199713500223
WOS
WOS:000336654000001
Archivio
http://hdl.handle.net/20.500.11767/32450
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84901687356
http://arxiv.org/abs/1211.2125
Diritti
metadata only access
Soggetti
  • irrationality conditi...

  • lindstet serie

  • non-degeneracy

  • quasi-periodic forcin...

  • quasi-periodic soluti...

  • small divisor

  • strongly dissipative ...

Scopus© citazioni
8
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
6
Data di acquisizione
Mar 28, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback