Epsilon-regularity for the mean curvature flow with boundary and transport term: a viscosity approach
Gasparetto, Carlo
2022-12-20
Abstract
This thesis is dedicated to the interior and boundary regularity of the mean curvature flow. We prove that, if a mean curvature flow with boundary and transport term is close enough to a stationary half-plane with density one, then it is $C^{1,\alpha}$. Our approach exploits the maximum principle for the mean curvature flow and Huisken's monotonicity formula. With the same techniques, we also provide a self-contained proof of Allard's regularity theorem.