Logo del repository
  1. Home
 
Opzioni

Geometry of the 3D Schroedinger problem and comparison with Finite Elements discretization

SPECOGNA, Ruben
•
TREVISAN, Francesco
2014
  • journal article

Periodico
IEEE TRANSACTIONS ON MAGNETICS
Abstract
The numerical modeling of nanoscale electron devices needs the development of accurate and efficient numerical methods, in particular, for the numerical solution of the Schrödinger problem. If FEMs allow an accurate geometric representation of the device, they lead to a discrete counterpart of Schrödinger problem in terms of a computationally heavy generalized eigenvalue problem. Exploiting the geometric structure behind the Schrödinger problem, we will construct a numerically efficient discrete counterpart of it, yielding to a standard eigenvalue problem. We will also show how the two approaches are only partially akin to each other even when lumping is applied.
DOI
10.1109/TMAG.2013.2281073
WOS
WOS:000332471700044
Archivio
http://hdl.handle.net/11390/879672
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84900602088
Diritti
closed access
Scopus© citazioni
0
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
0
Data di acquisizione
Feb 27, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback