Logo del repository
  1. Home
 
Opzioni

Characterization of the velocity and heat transfer fields in an internal cooling channel with high blockage ratio

CASARSA, Luca
•
CAKAN, M
•
ARTS T.
2002
  • conference object

Abstract
The present experimental study is dealing with a detailed aero/thermal investigation of the turbulent flow inside a rib-roughened turbine blade cooling channel by means of Particle Image Velocimetry (PIV) and Liquid Crystal Thermometry (LCT). The main objectives of the paper are to provide detailed information about the behaviour of such a complicated flow, useful for its understanding, and to create a wide and reliable data base for numerical code validation. The measurements are carried out at engine representative Reynolds number within a scaled up model of a stationary straight cooling channel, with turbulent promoters (or ribs) installed on one wall. The ribs have an angle of attack of 90 deg with respect to the “mean” flow direction; their blockage ratio is equal to 30%. Detailed wall heat transfer distributions are presented. The main time-averaged flow features are identified and quantified; a number of rms characteristics are put in evidence and compared to the heat transfer distributions.
DOI
10.1115/GT2002-30207
Archivio
http://hdl.handle.net/11390/673849
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0037003562
Diritti
metadata only access
Scopus© citazioni
37
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback