Logo del repository
  1. Home
 
Opzioni

Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model

Sanford T. H.
•
Zhang L.
•
Harmon S. A.
altro
Turkbey B.
2020
  • journal article

Periodico
AMERICAN JOURNAL OF ROENTGENOLOGY
Abstract
OBJECTIVE. Deep learning applications in radiology often suffer from overfitting, limiting generalization to external centers. The objective of this study was to develop a high-quality prostate segmentation model capable of maintaining a high degree of performance across multiple independent datasets using transfer learning and data augmentation. MATERIALS AND METHODS. A retrospective cohort of 648 patients who underwent prostate MRI between February 2015 and November 2018 at a single center was used for training and validation. A deep learning approach combining 2D and 3D architecture was used for training, which incorporated transfer learning. A data augmentation strategy was used that was specific to the deformations, intensity, and alterations in image quality seen on radiology images. Five independent datasets, four of which were from outside centers, were used for testing, which was conducted with and without fine-tuning of the original model. The Dice similarity coefficient was used to evaluate model performance. RESULTS. When prostate segmentation models utilizing transfer learning were applied to the internal validation cohort, the mean Dice similarity coefficient was 93.1 for whole prostate and 89.0 for transition zone segmentations. When the models were applied to multiple test set cohorts, the improvement in performance achieved using data augmentation alone was 2.2% for the whole prostate models and 3.0% for the transition zone segmentation models. However, the best test-set results were obtained with models fine-tuned on test center data with mean Dice similarity coefficients of 91.5 for whole prostate segmentation and 89.7 for transition zone segmentation. CONCLUSION. Transfer learning allowed for the development of a high-performing prostate segmentation model, and data augmentation and fine-tuning approaches improved performance of a prostate segmentation model when applied to datasets from external centers.
DOI
10.2214/AJR.19.22347
WOS
WOS:000592555200019
Archivio
http://hdl.handle.net/11390/1194691
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85096599851
Diritti
metadata only access
Soggetti
  • Artificial intelligen...

  • Prostate MRI

  • Segmentation

Scopus© citazioni
9
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
20
Data di acquisizione
Mar 26, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback