Logo del repository
  1. Home
 
Opzioni

MoO3 altered ZnO: A suitable choice for the photocatalytic removal of chloro-acetic acids in natural sunlight exposure

Qamar, M. Tariq
•
Aslam, M.
•
Rehan, Z. A.
altro
Hameed, A.
2017
  • journal article

Periodico
CHEMICAL ENGINEERING JOURNAL
Abstract
The MoO3 coated ZnO photocatalysts were synthesized for the optimum harvesting of the absorbed ultraviolet sunlight photons by initially permeating Mo6+ ions at the surface of pre-synthesized ZnO and finally transformed to MoO3 by thermal treatment in the air. The absorption spectra of the synthesized powders revealed the extension of the absorption edge in the visible region whereas, the photoluminescence spectroscopy established the supporting role of the MoO3 coating in gradually plummeting the excitons recombination. The growth of additional peaks in Raman as well as X-ray photoelectron spectra and the appearance of the corresponding low-intensity reflection substantiated the surface prevalence of MoO3. The absence of the individual particles of MoO3 in FESEM and the verification of coated layer by HRTEM images validated the authenticity of the adopted synthetic route. The electrochemical evaluation of the synthesized powders under illumination revealed the complete elimination of photocorrosion and the synergic role of the MoO3 layer for improved trap and transfer of charge carriers. The evaluation of the flat-band potentials of the coated powders by Mott-Schottky analysis revealed the suitability of the conduction band edges for the generation of superoxide anion radicals. The photocatalytic activity of the synthesized powders was assessed for the removal of chloro derivatives (mono-, di-, trichloroacetic acids) in comparison to pure acetic acid. A significant effect of the stability, polarity and stereochemical structure of the substrate on the photocatalytic removal process was observed and discussed. The experimental evidences from the time-scale chemical analysis were interpreted for the identification of the reactive oxygen species (ROS) involved in the degradation/mineralization process. The validation of the Langmuir-Hinshelwood kinetic model was also examined. Efforts were made to estimate the plausible route of the degradation/mineralization process.
DOI
10.1016/j.cej.2017.07.168
WOS
WOS:000414083300030
Archivio
http://hdl.handle.net/11368/2910776
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85026556204
http://www.sciencedirect.com/science/article/pii/S1385894717313153
Diritti
open access
license:creative commons
license:digital rights management non definito
license uri:http://creativecommons.org/licenses/by-nc-nd/3.0/it/
FVG url
https://arts.units.it/request-item?handle=11368/2910776
Soggetti
  • Acetic acid

  • Chloroacetic acid

  • MoO3 coated ZnO

  • Sunlight photocatalys...

  • Chemistry (all)

  • Environmental Chemist...

  • Chemical Engineering ...

  • Industrial and Manufa...

Web of Science© citazioni
22
Data di acquisizione
Mar 25, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback