Logo del repository
  1. Home
 
Opzioni

Characterization of the conformational space of the murine prion protein using single-molecule force spectroscopy techniques

Raspadori, Andrea
2014-10-14
  • doctoral thesis

Abstract
The conversion of the cellular prion protein (PrPC) to its infectious counterpart (PrPSc) is the initial step of prion diseases. These neurodegenerative disorders are characterized by different incubation times, sympthoms and disease phenotypes. Structural heterogenity of PrP aggregates is responsible for this biological diversity. Understanding the structural rearrangements of PrP at the monomeric and oligomeric level is essential to gain insights into its aggregation processes. However traditional “in-bulk” techniques can only provide ensemble-averaged information for monomer and oligomer structures. We applied single-molecule force spectroscopy to characterize the heterogeneous structural ensemble of the murine PrP at the monomeric and at the oligomeric level. By stretching chimeric protein construct carrying one MoPrP molecule we found that the protein folds with a two state mechanism. Less frequently the protein can adopt more extended conformations that encompass also the N-terminal domain. These structures might be involved in subsequent aggregation processes. We also developed an assay to characterize the oligomerization processes using multiple PrP constructs. By analyzing the extension of these constructs under tension we characterized the structure between different PrP moieties, under different conditions. We found that reciprocal PrP orientation affects the length and mechanical resistance of these structures but their events frequency. Comparing the structures observed from monomers, dimers, trimers and tetramers we found that their frequency of events and their average length increased by increasing the number of PrP moieties. Remarkably, decreasing pH to more acidic values resulted in a higher frequency of events that involved structures between PrP moieties only in multimeric constructs. Instead, increasing the ionic strength significantly diminished their frequency, indicating how solution conditions can strongly alter the conformational transitions. These results provide a new scenario on PrP misfolding and aggregation processes, characterizing their early aggregation steps under different reaction conditions.
Archivio
http://hdl.handle.net/20.500.11767/4124
Diritti
open access
Soggetti
  • prion protein

  • aggregation

  • atomic force microsco...

  • force spectroscopy

  • prion disease

  • single-molecule

  • conformational space

  • Settore BIO/10 - Bioc...

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback