Logo del repository
  1. Home
 
Opzioni

Nonlinear quasinormal mode detectability with next-generation gravitational wave detectors

Yi, Sophia
•
Kuntz, Adrien
•
Barausse, Enrico
altro
Maselli, Andrea
2024
  • journal article

Periodico
PHYSICAL REVIEW D
Abstract
In the aftermath of a binary black hole merger event, the gravitational wave signal emitted by the remnant black hole is modeled as a superposition of damped sinusoids known as quasinormal modes. While the dominant quasinormal modes originating from linear black hole perturbation theory have been studied extensively in this postmerger “ringdown” phase, more accurate models of ringdown radiation include the nonlinear modes arising from higher-order perturbations of the remnant black hole spacetime. We explore the detectability of quadratic quasinormal modes with both ground- and space-based next-generation detectors. We quantify how predictions of the quadratic mode detectability depend on the quasinormal mode starting times. We then calculate the signal-to-noise ratio of quadratic modes for several detectors and binary black hole populations, focusing on the (220×220) mode—i.e., on the quadratic term sourced by the square of the linear (220) mode. For the events with the loudest quadratic mode signal-to-noise ratios, we additionally compute statistical errors on the mode parameters in order to further ascertain the distinguishability of the quadratic mode from the linear quasinormal modes. The astrophysical models used in this paper suggest that while the quadratic mode may be detectable in at most a few events with ground-based detectors, the prospects for detection with the Laser Interferometer Space Antenna (LISA) are more optimistic.
DOI
10.1103/physrevd.109.124029
WOS
WOS:001248429200005
Archivio
https://hdl.handle.net/20.500.11767/140110
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85195858270
https://arxiv.org/abs/2403.09767
https://ricerca.unityfvg.it/handle/20.500.11767/140110
Diritti
open access
Soggetti
  • Settore FIS/05 - Astr...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback