Logo del repository
  1. Home
 
Opzioni

Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors

Bedon, Chiara
•
Santos, Filipe
2023
  • journal article

Periodico
APPLIED SCIENCES
Abstract
For structural design purposes, human-induced loads on pedestrian systems can be described by several simplified (i.e., deterministic equivalent-force models) or more complex computational approaches. Among others, the Spring-Mass-Damper (SMD), Single Degree of Freedom (SDOF) model has been elaborated by several researchers to describe single pedestrians (or groups) in the form of equivalent body mass m, spring stiffness k and damping coefficient c. For all these literature SMD formulations, it is proved that the biodynamic features of walking pedestrians can be realistically reproduced, with high computational efficiency for vibration serviceability assessment of those pedestrian systems mostly sensitive to human-induced loads (i.e., with vibration frequency f1 < 8 Hz). Besides, the same SMD proposals are characterized by mostly different theoretical and experimental assumptions for calibration. On the practical side, strongly different SMD input parameters can thus be obtained for a given pedestrian. This paper focuses on a selection of literature on SMD models, especially on their dynamic effects on different structural floor systems. Four different floors are explored (F#1 and F#2 made of concrete, F#3 and F#4 of glass), with high- or low-frequency, and/or high- (>1/130th) or low- (1/4th) mass ratio, compared to the occupant. Normal walking scenarios with frequency in the range fp = 1.5–2 Hz are taken into account for a total of 100 dynamic simulations. The quantitative comparison of typical structural performance indicators for vibration serviceability assessment (i.e., acceleration peak, RMS, CREST) shows significant sensitivity to input SMD assumptions. Most importantly, the sensitivity of structural behaviours is observed for low-frequency systems, as expected, but also for low-mass structures, which (as in the case of glazed floor solutions) can be characterized by the use of lightweight modular units with relatively high vibration frequency. As such, major attention can be required for their vibrational analysis and assessment.
DOI
10.3390/app13064023
WOS
WOS:000957728800001
Archivio
https://hdl.handle.net/11368/3043479
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85151930645
https://www.mdpi.com/2076-3417/13/6/4023
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3043479/1/applsci-13-04023-v2.pdf
Soggetti
  • human-induced effect

  • pedestrian structure

  • Spring-Mass-Damper (S...

  • Single Degree of Free...

  • numerical analysi

  • structural performanc...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback