Logo del repository
  1. Home
 
Opzioni

Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?

Shi, Jingjing
•
Lapi, Andrea
•
Danese, Luigi
altro
Wang, H.
2017
  • journal article

Periodico
THE ASTROPHYSICAL JOURNAL
Abstract
We investigate the origin, the shape, the scatter, and the cosmic evolution in the observed relationship between specific angular momentum $j_\star$ and the stellar mass $M_\star$ in early-type (ETGs) and late-type galaxies (LTGs). Specifically, we exploit the observed star-formation efficiency and chemical abundance to infer the fraction $f_\rm inf$ of baryons that infall toward the central regions of galaxies where star formation can occur. We find $f_\rm inf\approx 1$ for LTGs and $\approx 0.4$ for ETGs with an uncertainty of about $0.25$ dex, consistent with a biased collapse. By comparing with the locally observed $j_\star$ vs. $M_\star$ relations for LTGs and ETGs we estimate the fraction $f_j$ of the initial specific angular momentum associated to the infalling gas that is retained in the stellar component: for LTGs we find $f_j\approx 1.11^+0.75_-0.44$, in line with the classic disc formation picture; for ETGs we infer $f_j\approx 0.64^+0.20_-0.16$, that can be traced back to a $z<1$ evolution via dry mergers. We also show that the observed scatter in the $j_\star$ vs. $M_\star$ relation for both galaxy types is mainly contributed by the intrinsic dispersion in the spin parameters of the host dark matter halo. The biased collapse plus mergers scenario implies that the specific angular momentum in the stellar components of ETG progenitors at $z\sim 2$ is already close to the local values, in pleasing agreement with observations. All in all, we argue such a behavior to be imprinted by nature and not nurtured substantially by the environment.
DOI
10.3847/1538-4357/aa7893
WOS
WOS:000405278700005
Archivio
http://hdl.handle.net/20.500.11767/56064
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85025101616
https://arxiv.org/abs/1706.02165
Diritti
open access
Soggetti
  • galaxies: elliptical ...

  • galaxies: evolution

  • galaxies: formation

  • galaxies: fundamental...

  • Settore FIS/05 - Astr...

Web of Science© citazioni
18
Data di acquisizione
Mar 24, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback