Logo del repository
  1. Home
 
Opzioni

Reanalysis of Gene Expression Profiles of CD4+ T Cells Treated with HIV-1 Latency Reversal Agents

Campos Coelho, Antonio Victor
•
Moura, Ronald Rodrigues de
•
Crovella, Sergio
2020
  • journal article

Periodico
MICROORGANISMS
Abstract
The human immunodeficiency virus (HIV-1) causes a progressive depletion of CD4+ T cells, hampering immune function. Current experimental strategies to fight the virus focus on the reactivation of latent HIV-1 in the viral reservoir to make the virus detectable by the immune system, by searching for latency reversal agents (LRAs). We hypothesize that if common molecular pathways elicited by the presence of LRAs are known, perhaps new, more efficient, "shock-and-kill" strategies can be found. Thus, the objective of the present study is to re-evaluate RNA-Seq assays to find differentially expressed genes (DEGs) during latency reversal via transcriptome analysis. We selected six studies (45 samples altogether: 16 negative controls and 29 LRA-treated CD4+ T cells) and 11 LRA strategies through a systematic search in Gene Expression Omnibus (GEO) and PubMed databases. The raw reads were trimmed, counted, and normalized. Next, we detected consistent DEGs in these independent experiments. AZD5582, romidepsin, and suberanilohydroxamic acid (SAHA) were the LRAs that modulated most genes. We detected 948 DEGs shared by those three LRAs. Gene ontology analysis and cross-referencing with other sources of the literature showed enrichment of cell activation, differentiation and signaling, especially mitogen-activated protein kinase (MAPK) and Rho-GTPases pathways.
DOI
10.3390/microorganisms8101505
WOS
WOS:000585343400001
Archivio
http://hdl.handle.net/11368/2972512
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85097033312
https://www.mdpi.com/2076-2607/8/10/1505
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2972512/1/HIV_LRA_microorganisms-08-01505.pdf
Soggetti
  • RNA-Seq

  • antiretroviral therap...

  • reservoir

  • shock-and-kill

  • transcriptomics

Web of Science© citazioni
2
Data di acquisizione
Mar 27, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback