Logo del repository
  1. Home
 
Opzioni

Numerical Approaches Towards the Galactic Synchrotron Emission

Wang, Jiaxin
2019-09-16
Abstract
The Galactic synchrotron emission contains abundant physics of the magnetized Galactic interstellar medium and has a non-negligible influence on detecting the B-mode polarization of the Cosmic microwave background radiation and understanding the physics during the re-ionization epoch. To catch up with the growing precision in astrophysical measurements, we need not only better theoretical modelings, but also more powerful numerical simulations and analyzing pipelines for acquiring deeper understandings in both the Galactic environment and the origin of the Universe. In this dissertation, we focus on the Galactic synchrotron emission which involves the turbulent and magnetized interstellar medium and energetic cosmic-ray electrons. To study the Galactic synchrotron emission consistently we need a non-trivial Bayesian analyzer with specially designed likelihood function, a fast and precise radiative transfer simulator, and cosmic ray electron propagation solver. We first present version X of the hammurabi package, the HEALPix-based numeric simulator for Galactic polarized emission. Two fast methods are proposed for realizing divergence-free Gaussian random magnetic fields either on the Galactic scale where a field alignment and strength modulation are imposed or on a local scale where more physically motivated models like a parameterized magneto-hydrodynamic turbulence can be applied. Secondly, we present our effort in using the finite element method for solving the cosmic ray (electron) transport equation within the phase-space domain that has a number of dimensions varying from two to six. The numeric package BIFET is developed on top of the deal.ii library with support in the adaptive mesh refinement. Our first aim with BIFET is to build the basic framework that can support a high dimensional PDE solving. Finally, we introduce the work related to the complete design of IMAGINE, which is proposed particularly with the ensemble likelihood for inferring the distributions of Galactic components.
Archivio
http://hdl.handle.net/20.500.11767/102817
Diritti
open access
Soggetti
  • methods: numerical

  • methods: statistical

  • ISM: cosmic ray

  • ISM: magnetic fields

  • Settore FIS/05 - Astr...

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback