Logo del repository
  1. Home
 
Opzioni

Quinacrine is mainly metabolized to mono-desethyl quinacrine by CYP3A4/5 and its brain accumulation is limited by P-glycoprotein

HUANG Y
•
OKOCHI H
•
MAY BC
altro
Legname, Giuseppe
2006
  • journal article

Periodico
DRUG METABOLISM AND DISPOSITION
Abstract
Quinacrine (QA), an antimalarial drug used for over seven decades, has been found to have potent antiprion activity in vitro. To determine whether QA can be used to treat prion diseases, we investigated its metabolism and ability to traverse the blood-brain barrier in mice. In vitro and in vivo, we identified by liquid chromatography-tandem mass spectrometry the major metabolic pathway of QA as N-desethylation and compared our results with an authentic reference compound. The major human cytochrome (P450) isoforms involved in QA mono-desethylation were identified as CYP3A4/5 by using specific chemical and antibody inhibition as well as cDNA-expressed P450 studies. QA transport from the basolateral to apical side in multidrug resistance protein 1 gene (MDR1)-transfected Madin-Darby canine kidney (MDCK) cells was markedly greater than in control MDCK cells and was inhibited by the potent P-glycoprotein (P-gp) inhibitor GG918 (N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-iso-1-quinolynyl)-ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamine). In MDR1-knockout (KO) mice, QA brain levels were 6 to 9 times higher after a single i.v. dose of 2 mg/kg QA and 49 times higher after multiple oral doses of 10 mg/kg/day QA for 7 days, compared with those in wild-type (WT) FVB mice. In contrast, the QA levels in plasma, liver, spleen, and kidney were similar after a single 2 mg/kg i.v. dose and <2 times greater after 10 mg/kg oral doses in MDR1-KO mice compared with WT mice. These results indicate that P-gp plays a critical role in transporting QA from the brain.
DOI
10.1124/dmd.105.008664
WOS
WOS:000238438000009
Archivio
http://hdl.handle.net/20.500.11767/12108
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-33745234824
Diritti
closed access
Scopus© citazioni
42
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
46
Data di acquisizione
Mar 26, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback