Logo del repository
  1. Home
 
Opzioni

Day-ahead photovoltaic forecasting: A comparison of the most effective techniques

Nespoli A.
•
Ogliari E.
•
Leva S.
altro
Dolara A.
2019
  • journal article

Periodico
ENERGIES
Abstract
We compare the 24-hour ahead forecasting performance of two methods commonly used for the prediction of the power output of photovoltaic systems. Both methods are based on Artificial Neural Networks (ANN), which have been trained on the same dataset, thus enabling a much-needed homogeneous comparison currently lacking in the available literature. The dataset consists of an hourly series of simultaneous climatic and PV system parameters covering an entire year, and has been clustered to distinguish sunny from cloudy days and separately train the ANN. One forecasting method feeds only on the available dataset, while the other is a hybrid method as it relies upon the daily weather forecast. For sunny days, the first method shows a very good and stable prediction performance, with an almost constant Normalized Mean Absolute Error, NMAE%, in all cases (1% < NMAE% < 2%); the hybrid method shows an even better performance (NMAE% < 1%) for two of the days considered in this analysis, but overall a less stable performance (NMAE% > 2% and up to 5.3% for all the other cases). For cloudy days, the forecasting performance of both methods typically drops; the performance is rather stable for the method that does not use weather forecasts, while for the hybrid method it varies significantly for the days considered in the analysis.
DOI
10.3390/en12091621
WOS
WOS:000469761700037
Archivio
http://hdl.handle.net/11368/2957402
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85066244532
https://www.mdpi.com/1996-1073/12/9/1621
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2957402/1/energies-12-01621.pdf
Soggetti
  • Day-ahead forecasting...

  • Micro-grid

  • Neural network

  • PV system

Web of Science© citazioni
106
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback