Logo del repository
  1. Home
 
Opzioni

A counterexample to gluing theorems for MCP metric measure spaces

Rizzi L.
2018
  • journal article

Periodico
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Abstract
Perelman's doubling theorem asserts that the metric space obtained by gluing along their boundaries two copies of an Alexandrov space with curvature ≥κ is an Alexandrov space with the same dimension and satisfying the same curvature lower bound. We show that this result cannot be extended to metric measure spaces satisfying synthetic Ricci curvature bounds in the MCP sense. The counterexample is given by the Grushin half-plane, which satisfies the MCP(0,N) if and only if N≥4, while its double satisfies the MCP(0,N) if and only if N≥5.
DOI
10.1112/blms.12186
WOS
WOS:000446062800004
Archivio
http://hdl.handle.net/20.500.11767/128685
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85050510143
http://arxiv.org/abs/1711.04499v2
https://ricerca.unityfvg.it/handle/20.500.11767/128685
Diritti
metadata only access
Soggetti
  • 53C17

  • 54E45

  • 54E50 (primary)

  • Mathematics - Metric ...

  • Mathematics - Metric ...

  • Mathematics - Differe...

  • 53C17, 54E45, 54E50

  • Settore MAT/05 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback