Logo del repository
  1. Home
 
Opzioni

Soliton Shielding of the Focusing Nonlinear Schrödinger Equation

Bertola M.
•
Grava T.
•
Orsatti G.
2023
  • journal article

Periodico
PHYSICAL REVIEW LETTERS
Abstract
We first consider a deterministic gas of N solitons for the focusing nonlinear Schrodinger (FNLS) equation in the limit N -infinity with a point spectrum chosen to interpolate a given spectral soliton density over a bounded domain of the complex spectral plane. We show that when the domain is a disk and the soliton density is an analytic function, then the corresponding deterministic soliton gas surprisingly yields the one-soliton solution with the point spectrum the center of the disk. We call this effect soliton shielding. We show that this behavior is robust and survives also for a stochastic soliton gas: indeed, when the N-soliton spectrum is chosen as random variables either uniformly distributed on the circle, or chosen according to the statistics of the eigenvalues of the Ginibre random matrix the phenomenon of soliton shielding persists in the limit N -infinity. When the domain is an ellipse, the soliton shielding reduces the spectral data to the soliton density concentrating between the foci of the ellipse. The physical solution is asymptotically steplike oscillatory, namely, the initial profile is a periodic elliptic function in the negative x direction while it vanishes exponentially fast in the opposite direction.
DOI
10.1103/PhysRevLett.130.127201
WOS
WOS:000989413500019
Archivio
https://hdl.handle.net/20.500.11767/138274
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85151292163
https://arxiv.org/abs/2112.05985
Diritti
closed access
Soggetti
  • soliton ga

  • soliton shielding foc...

  • Settore MAT/07 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback