Logo del repository
  1. Home
 
Opzioni

Representing Dehn twists with branched coverings

ZUDDAS D
2009
  • journal article

Periodico
INTERNATIONAL MATHEMATICS RESEARCH NOTICES
Abstract
We show that any homologically non-trivial Dehn twist of a compact surface $F$ with boundary is the lifting of a half-twist in the braid group ${cal B}_{n}$, with respect to a suitable branched covering $p : F o B^2$. In particular, we allow the surface to have disconnected boundary. As a consequence, any allowable Lefschetz fibration on $B^2$ is a branched covering of $B^2 imes B^2$.
DOI
10.1093/imrn/rnn134
WOS
WOS:000265609500001
Archivio
http://hdl.handle.net/11368/2956820
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84864127758
Diritti
metadata only access
Soggetti
  • Dehn twist

  • liftable braid

  • mapping class group

Scopus© citazioni
1
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
1
Data di acquisizione
Mar 25, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback