Logo del repository
  1. Home
 
Opzioni

Topologies of Random Geometric Complexes on Riemannian Manifolds in the Thermodynamic Limit

Auffinger, Antonio
•
Lerario, Antonio
•
Lundberg, Erik
2021
  • journal article

Periodico
INTERNATIONAL MATHEMATICS RESEARCH NOTICES
Abstract
We investigate the topologies of random geometric complexes built over random points sampled on Riemannian manifolds in the so-called “thermodynamic” regime. We prove the existence of universal limit laws for the topologies; namely, the random normalized counting measure of connected components (counted according to homotopy type) is shown to converge in probability to a deterministic probability measure. Moreover, we show that the support of the deterministic limiting measure equals the set of all homotopy types for Euclidean connected geometric complexes of the same dimension as the manifold.
DOI
10.1093/imrn/rnaa050
WOS
WOS:000731075000006
Archivio
http://hdl.handle.net/20.500.11767/112652
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85122220659
https://arxiv.org/abs/1812.09224
Diritti
metadata only access
Soggetti
  • Settore MAT/03 - Geom...

Web of Science© citazioni
5
Data di acquisizione
Mar 27, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback