Logo del repository
  1. Home
 
Opzioni

A semilinear second order elliptic system

Egberts, Paul
1990
  • Controlled Vocabulary...

Abstract
In questa nota si considera un'equazione del tipo \[ \begin{cases} \overset{Lu+\beta(u)\ni f(x,u)}{u=0\qquad\qquad} & \overset{in\:\Omega}{su\:\partial\:\Omega}\end{cases} \] dove $\Omega\subset\mathbf{R^{\textrm{n}}\textrm{(}}n\geq1)$ è un aperto con frontiera regolare, L = diag ( L$_{1}$, ... , L$_{N}$) (N$\geq$1) è una matrice diagonale di operatori ellittici, $\beta$ è un grafico massimale monotono in $\mathcal{\mathscr{\mathcal{R}}}^{N}$ ed f : $\Omega\times\mathbf{R}^{\textrm{N}}\rightarrow\mathbf{R}^{\textrm{N}}$ è una funzione di tipo Caratheodory soddisfacente ad una condizione di crescita. Per questa equazione si prova un risultato di esistenza. In this note we consider an equation of the form \[ \begin{cases} \overset{Lu+\beta(u)\ni f(x,u)}{u=0\qquad\qquad} & \overset{in\:\Omega}{su\:\partial\:\Omega}\end{cases} \] where $\Omega\subset\mathbf{R^{\textrm{n}}\textrm{(}}n\geq1)$ is an open set with smooth boundary, L = diag ( L$_{1}$, ... , L$_{N}$) (N$\geq$1) is a diagonal matrix of second order elliptic operators, $\beta$ is an $\mathcal{\mathit{m}}$-accretive graph in $\mathcal{\mathscr{\mathcal{R}}}^{N}$ and f : $\Omega\times\mathbf{R}^{\textrm{N}}\rightarrow\mathbf{R}^{\textrm{N}}$ is a given Caratheodory function satisfying some growth condition. We prove an existence result for this system.
Archivio
http://hdl.handle.net/10077/4826
Diritti
open access
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback