Logo del repository
  1. Home
 
Opzioni

Three- and four-center trans effects in triply bonded ditungsten complexes: An ab initio molecular dynamics study of compounds with stoichiometry W2Cl4(NHEt)(2)(PMe3)(2)

MAGISTRATO, ALESSANDRA
•
VandeVondele J
•
Rothlisberger U.
2000
  • journal article

Periodico
INORGANIC CHEMISTRY
Abstract
We have performed ab initio molecular dynamics simulations based on density functional theory to characterize the structural, electronic, and dynamic properties of the three major isomeric forms of the title compound. In agreement with experimental results, calculations with two different parametrizations of the exchange-correlation functional (BLYP and BP) both indicate the cis-C-2 form as the most stable isomer. The relative energies of the different forms are, however, small (less than or similar to1-2 kcal/mol), and the three compounds show overall very similar ground-state properties. Larger differences exist in their finite temperature behavior, which is dominated by the facile dissociation of one or both phosphine ligands. The calculated activation energies for phosphine dissociation differ clearly for the trans and the cis isomers and vary in the order trans much less than cis-C-2 less than or similar to cis-C-i. Analysis of the electronic structure of the transition states shows that the difference in activation energy between cis and trans isomers can be rationalized in terms of a classic trans effect caused by a molecular orbital spanning the three atomic centers N-W-P. The subtle difference between the two cis isomers, on the other hand, is likely due to an analogous four-center trans effect N-W-W-P which is mediated via metal-metal orbitals and involves ligands on both tungsten atoms.
DOI
10.1021/ic000754e
WOS
WOS:000165560000025
Archivio
http://hdl.handle.net/20.500.11767/32690
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0034722240
Diritti
metadata only access
Web of Science© citazioni
11
Data di acquisizione
Mar 28, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback