Logo del repository
  1. Home
 
Opzioni

Sensitive Detection of Gynecological Cancer Recurrence Using Circulating Tumor DNA and Digital PCR: A Comparative Study with Serum Biochemical Markers

Balasan, Nour
•
Kharrat, Feras
•
Di Lorenzo, Giovanni
altro
d'Adamo, Adamo Pio
2024
  • journal article

Periodico
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Abstract
Early detection of recurrences in gynecological cancers is crucial for women’s health. Circulating tumor DNA (ctDNA) analysis through liquid biopsy offers a promising approach for monitoring disease progression and identifying relapses. This study investigated the utility of digital Polymerase Chain Reaction (dPCR) for ctDNA detection in three gynecological cancer patients with clinically confirmed relapses during a two-year post-surgical follow-up. Patient-specific tumor mutations were identified through whole-exome sequencing (WES) and confirmed via Sanger sequencing. dPCR probes targeting these mutations were used to quantify the ctDNA levels in plasma samples collected throughout the follow-up period, and the findings were compared with standard serum biochemical markers. In two patients, persistent positive dPCR signals for the selected mutations were detected after tumor removal, with ctDNA levels progressively increasing even after post-surgical chemotherapy. Notably, dPCR identified elevated ctDNA levels before an increase in the cancer antigen 125 (CA125) biochemical marker was observed. In the third patient, no ctDNA signals from the two selected mutations were detected despite clinical evidence of recurrence, suggesting the emergence of new mutations. While this study highlights the promise of dPCR for early recurrence detection in gynecological cancers, it also underscores the critical need for comprehensive mutation panels to overcome the inherent challenges posed by tumor heterogeneity and the emergence of new mutations during disease progression.
DOI
10.3390/ijms252211997
WOS
WOS:001365405700001
Archivio
https://hdl.handle.net/11368/3097659
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85210585556
https://www.mdpi.com/1422-0067/25/22/11997
Diritti
open access
license:creative commons
license:digital rights management non definito
license uri:http://creativecommons.org/licenses/by/4.0/
license uri:iris.pri00
FVG url
https://arts.units.it/bitstream/11368/3097659/1/ijms_25_11997.pdf
Soggetti
  • liquid biopsy

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback