Logo del repository
  1. Home
 
Opzioni

Metric Entropy for Hamilton-Jacobi Equations with Uniformly Directionally Convex Hamiltonian

Bianchini, Stefano
•
Dutta, Prerona
•
Nguyen, Khai T.
2022
  • journal article

Periodico
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Abstract
The present paper studies the bounded variation-type regularity for viscosity solutions of the Hamilton-Jacobi equation ut(t, x) + H ( Dxu(t, x) ) = 0, (t, x) (0,∞) × Rd, with a coercive and uniformly directionally convex Hamiltonian H. More precisely, we establish a BV bound on the slope of backward characteristics DH(Dxu(t, )) starting at a positive time t. Relying on the BV bound, we quantify the metric entropy in W1,1 loc ( Rd ) for the map St that associates, to every given initial data u0 Lip ( Rd ) , the corresponding solution Stu0. Finally, a counterexample is constructed to show that both Dxu(t, ) and DH(Dxu(t, )) fail to be in BVloc for a general strictly convex and coercive H ∈ C 2 ( Rd).
DOI
10.1137/22M1475430
WOS
WOS:001131278600005
Archivio
https://hdl.handle.net/20.500.11767/135417
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85140030244
https://arxiv.org/abs/2012.10577
https://ricerca.unityfvg.it/handle/20.500.11767/135417
Diritti
metadata only access
Soggetti
  • bounded total variati...

  • Hamilton-Jacobi equat...

  • Hopf-Lax semigroup

  • Kolmogorov entropy

  • semiconcave functions...

  • Settore MAT/05 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback