Logo del repository
  1. Home
 
Opzioni

Copper-catalyzed oxidation of the recombinant SHa (29-231) prion protein

Requena, J. R.
•
Groth, D.
•
Legname, G.
altro
Levine, R. L.
2001
  • journal article

Periodico
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Abstract
Metal-catalyzed oxidation may result in structural damage to proteins and has been implicated in aging and disease, including neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis. The selective modification of specific amino acid residues with high metal ion affinity leads to subtle structural changes that are not easy to detect but may have dramatic consequences on physical and functional properties of the oxidized protein molecules. PrP contains a histidine-rich octarepeat domain that binds copper. Because copper-binding histidine residues are particularly prone to metal-catalyzed oxidation, we investigated the effect of this reaction on the recombinant prion protein SHaPrP(29-231). Using Cu2+/ascorbate, we oxidized SHaPrP(29-231) in vitro. Oxidation was demonstrated by liquid chromatography/mass spectrometry, which showed the appearance of protein species of higher mass, including increases in multiples of 16, characteristic of oxygen incorporation. Digestion studies using Lys C indicate that the 29-101 region, which includes the histidine-containing octarepeats, is particularly affected by oxidation. Oxidation was time- and copper concentration-dependent and was evident with copper concentrations as low as 1 microM. Concomitant with oxidation, SHaPrP(29-231) suffered aggregation and precipitation, which was nearly complete after 15 min, when the prion protein was incubated at 37 degrees C with a 6-fold molar excess of Cu2+. These findings indicate that PrP, a copper-binding protein, may be particularly susceptible to metal-catalyzed oxidation and that oxidation triggers an extensive structural transition leading to aggregation.
DOI
10.1073/pnas.121190898
WOS
WOS:000169456600035
Archivio
http://hdl.handle.net/20.500.11767/14762
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0035912772
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34641/
Diritti
closed access
Soggetti
  • Settore BIO/10 - Bioc...

Web of Science© citazioni
126
Data di acquisizione
Mar 28, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback