Logo del repository
  1. Home
 
Opzioni

Genetic grafting of membrane-acting peptides to the cytotoxin dianthin augments its ability to de-stabilize lipid bilayers and enhances its cytotoxic potential as the component of transferrin-toxin conjugates

LORENZETTI I
•
MENEGUZZI A
•
FRACASSO G
altro
Legname, Giuseppe
2000
  • journal article

Periodico
INTERNATIONAL JOURNAL OF CANCER
Abstract
Three chimeric proteins were obtained by fusing together the dianthin gene and DNA fragments encoding for the following membrane-acting peptides: the N-terminus of protein G of the vesicular stomatitis virus (KFT25), the N terminus of the HA2 hemagglutinin of influenza virus (pHA2), and a membrane-acting peptide (pJVE). Chimeric dianthins (KFT25DIA, pHA2DIA and pJVEDIA) retained full enzymatic activity in cell-free assays and showed increased ability to induce pH-dependent calcein release from large unilamellar vesicles (LUVs). pHA2DIA and pJVEDIA also showed faster kinetics of interaction with LUVs, while KFT25DIA and pHA2DIA displayed a reduced cytotoxicity as compared to wild-type dianthin. Conjugates made by chemically cross-linking KFT25DIA or pJVEDIA and human transferrin (Tfn) showed greater cell-killing efficiency than conjugates of Tfn and wild-type dianthin. As a consequence, by fusion of membrane-acting peptides to the dianthin sequence the specificity factor (i.e., the ratio between non-specific and specific toxicity) of Tfn-KFT25DIA, Tfn-pHA2DIA and Tfn-pJVEDIA was increased with respect to that of Tfn-based conjugates made with wild-type dianthin. Taken together, our results suggest that genetic fusion of membrane-acting peptides to enzymatic cytotoxins results in the acquisition of new physico-chemical properties exploitable for designing new recombinant cytotoxins and to tackle cell-intoxication mechanisms.
DOI
10.1002/(SICI)1097-0215(20000515)86:4<582::AID-IJC22>3.0.CO;2-I
WOS
WOS:000086839200021
Archivio
http://hdl.handle.net/20.500.11767/16143
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0034017238
Diritti
closed access
Scopus© citazioni
16
Data di acquisizione
Jun 7, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback