Logo del repository
  1. Home
 
Opzioni

Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression

Kogai T
•
Hyman S
•
Cornford EM
altro
CURCIO, Francesco
2000
  • journal article

Periodico
JOURNAL OF ENDOCRINOLOGY
Abstract
Iodide uptake by the sodium/iodide symporter (NIS) in thyrocytes is essential for thyroid hormone production. Reduced NIS activity has been reported in thyroid diseases, including thyroid cancer and congenital hypothyroidism. The study of iodide uptake in thyrocytes has been limited by the availability of appropriate in vitro models, A new culture technique was recently developed that allows normal human thyroid primary culture cells to grow as monolayer cells and express differentiated functions for more than 3 months. We used this technique to study the effect of follicle formation and TSH on iodide uptake in these cells. Iodide uptake by the cells grown in monolayer was very low. Follicle formation was induced from monolayer cells, and electron micrographs demonstrated cell polarity in the follicles. No significant increase in iodide uptake was observed after TSH treatment of cells in monolayer or when follicle formation was induced without TSH. TSH stimulation of follicles, however, significantly increased iodide uptake (similar to4.4-fold; P<0.001). Compared with iodide uptake in monolayers, the combination of follicle formation and TSH treatment stimulated iodide uptake synergistically to 12.0-fold (P<0.001). NIS messenger RNA (mRNA) and protein levels were almost the same in both monolayer cells and follicles. TSH treatment of monolayers and follicles produced significant (P<0.05) stimulation of mRNA (<similar to>4.8- and 4.3-fold respectively) and protein (similar to6.8- and 4.9-fold respectively). TSH stimulated NIS protein levels in both monolayer and follicles, however, stimulation of functional iodide uptake was only seen with TSH stimulation of follicles. The function of NIS may involve post-transcriptional events, such as intracellular sorting, membrane localization of NIS or another NIS regulatory factor. Polarized functions, such as iodide efflux into follicular lumina, may also contribute to the increased iodide concentration after follicle formation.
DOI
10.1677/joe.0.1670125
WOS
WOS:000167209300014
Archivio
http://hdl.handle.net/11390/672337
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0033790427
Diritti
metadata only access
Web of Science© citazioni
60
Data di acquisizione
Mar 28, 2024
Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback