The steered response power (SRP) algorithms have been shown to be among the most effective and robust ones in noisy environments for direction of arrival (DOA) estimation. In broadband signal applications, the SRP methods typically perform their computations in the frequency-domain by applying a fast Fourier transform (FFT) on a signal portion, calculating the response power on each frequency bin, and subsequently fusing these estimates to obtain the final result. We introduce a frequency response incoherent fusion method based on a normalized arithmetic mean (NAM). Experiments are presented that rely on the SRP algorithms for the localization of motor vehicles in a noisy outdoor environment, focusing our discussion on performance differences with respect to different signal-to-noise ratios (SNR), and on spatial resolution issues for closely spaced sources. We demonstrate that the proposed fusion method provides higher resolution for the delay-and-sum SRP, and improved performances for minimum variance distortionless response (MVDR) and multiple signal classification (MUSIC)