Logo del repository
  1. Home
 
Opzioni

Bakry-Emery curvature-dimension condition and Riemannian Ricci curvature bounds

Ambrosio, Luigi
•
Gigli, Nicola
•
Savaré, Giuseppe
2015
  • journal article

Periodico
ANNALS OF PROBABILITY
Abstract
The aim of the present paper is to bridge the gap between the Bakry-Emery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form $\mathcal E$ admitting a Carre' du champ $\Gamma$ in a Polish measure space $(X,m)$ and a canonical distance $d_\mathcal E$ that induces the original topology of $X$. We first characterize the distinguished class of Riemannian Energy measure spaces, where $\mathcal E$ coincides with the Cheeger energy induced by $d_\mathcal E$ and where every function $f$ with $\Gamma (f)\leq 1$ admits a continuous representative. In such a class we show that if $E$ satisfies a suitable weak form of the Bakry-Emery curvature dimension condition $BE(K,\infty)$ then the metric measure space $(X,d,m)$ satisfies the Riemannian Ricci curvature bound $RCD(K,\infty)$ according to [5], thus showing the equivalence of the two notions. Two applications are then proved: the tensorization property for Riemannian Energy spaces satisfying the Bakry-Emery condition $BE(K,N)$ (and thus the corresponding one for $RCD(K,\infty)$ spaces without assuming nonbranching) and the stability of $BE(K,N)$ with respect to Sturm-Gromov-Hausdorff convergence.
DOI
10.1214/14-AOP907
WOS
WOS:000346325600009
Archivio
http://hdl.handle.net/20.500.11767/12638
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84920265397
https://arxiv.org/abs/1209.5786
Diritti
closed access
Soggetti
  • Barky-émery conditio...

  • Dirichlet form

  • Gamma calculu

  • Metric measure space

  • Ricci curvature

  • Settore MAT/05 - Anal...

Scopus© citazioni
125
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
154
Data di acquisizione
Mar 27, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback